The rat lumbosacral spinal cord adapts to robotic loading applied during stance.

نویسندگان

  • W K Timoszyk
  • R D De Leon
  • N London
  • R R Roy
  • V R Edgerton
  • D J Reinkensmeyer
چکیده

Load-related afferent information modifies the magnitude and timing of hindlimb muscle activity during stepping in decerebrate animals and spinal cord-injured humans and animals, suggesting that the spinal cord mediates load-related locomotor responses. In this study, we found that stepping on a treadmill by adult rats that received complete, midthoracic spinal cord transections as neonates could be altered by loading the hindlimbs using a pair of small robotic arms. The robotic arms applied a downward force to the lower shanks of the hindlimbs during the stance phase and measured the position of the lower shank during stepping. No external force was applied during the swing phase of the step. When applied bilaterally, this stance force field perturbed the hindlimb trajectories so that the ankle position was shifted downward during stance. In response to this perturbation, both the stance and step cycle durations decreased. During swing, the hindlimb initially accelerated toward the normal, unperturbed swing trajectory and then tracked the normal trajectory. Bilateral loading increased the magnitude of the medial gastrocnemius electromyographic (EMG) burst during stance and increased the amplitude of the semitendinosus and rectus femoris EMG bursts. When the force field was applied unilaterally, stance duration decreased in the loaded hindlimb, while swing duration was decreased in the contralateral hindlimb, thereby preserving interlimb coordination. These results demonstrate the feasibility of using robotic devices to mechanically modulate afferent input to the injured spinal cord during weight-supported locomotion. In addition, these results indicate that the lumbosacral spinal cord responds to load-related input applied to the lower shank during stance by modifying step timing and muscle activation patterns, while preserving normal swing kinematics and interlimb coordination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.

Loading on the limbs has a powerful influence on locomotion. In the present study, we examined whether robotic-enhanced loading during treadmill training improved locomotor recovery in rats that were spinally transected as neonates. A robotic device applied a force on the ankle of the hindlimb while the rats performed bipedal stepping on a treadmill. The robotic force enhanced loading during th...

متن کامل

Association of morphine-induced analgesic tolerance with changes in gene expression of GluN1 and MOR1 in rat spinal cord and midbrain

Objective(s): We aimed to examine association of gene expression of MOR1 and GluN1 at mRNA level in the lumbosacral cord and midbrain with morphine tolerance in male Wistar rats. Materials and Methods: Analgesic effects of morphine administrated intraperitoneally at doses of 0.1, 1, 5 and 10 mg/kg were examined using a hot plate test in rats with and without a history of 15 days morphine (10 mg...

متن کامل

Human lumbosacral spinal cord interprets loading during stepping.

Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the ef...

متن کامل

Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.

BACKGROUND The human lumbosacral spinal circuitry can generate rhythmic motor output in response to different types of inputs after motor-complete spinal cord injury. OBJECTIVE To explore spinal rhythm generating mechanisms recruited by phasic step-related sensory feedback and tonic posterior root stimulation when provided alone or in combination. METHODS We studied stepping in 4 individual...

متن کامل

Weight support and balance during perturbed stance in the chronic spinal cat.

The intact cat maintains balance during unexpected disturbances of stance through automatic postural responses that are stereotyped and rapid. The extent to which the chronic spinal cat can maintain balance during stance is unclear, and there have been no quantitative studies that examined this question directly. This study examined whether the isolated lumbosacral cord of the chronic spinal ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 6  شماره 

صفحات  -

تاریخ انتشار 2002